생성된 데이터셋으로 훈련하기
#생성된 데이터셋으로 훈련하기
from keras.models import Sequential
from keras.layers import Dropout, Activation, Dense
from keras.layers import Flatten, Convolution2D, MaxPooling2D
from keras.models import load_model
import numpy as np
import cv2 #openCV 라이브러리 import하기
#분류할 카테고리명이 되기에 데이터셋 만들 당시 폴더명과 동일하게 해야함.
categories = ["road", "water", "building", "green"]
num_classes = len(categories)
#앞에서 만든 데이터셋을 불러온다.
X_train, X_test, Y_train, Y_test = np.load('./imageDataList_25.npy', allow_pickle = True)
model = Sequential()
model = Sequential()
model.add(Convolution2D(16, 3, 3, border_mode='same', activation='relu',
input_shape=X_train.shape[1:]))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes,activation = 'softmax'))
model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=32, nb_epoch=100)
score = model.evaluate(X_test, Y_test)
print('loss==>' ,score[0]*100)
print('accuracy==>', score[1]*100)
#모델을 저장할 경로와 파일명을 지정한다.
model.save('cnnModel_25.h5')